Am Montag 03.07.00 wissen viele Amerikaner was Nanotechnologie ist, weil....m.T.


Seite 1 von 1
Neuester Beitrag: 28.06.00 14:50
Eröffnet am:27.06.00 22:23von: upper fallsAnzahl Beiträge:4
Neuester Beitrag:28.06.00 14:50von: CharonJr.Leser gesamt:2.315
Forum:Börse Leser heute:3
Bewertet mit:


 

127 Postings, 8969 Tage upper fallsAm Montag 03.07.00 wissen viele Amerikaner was Nanotechnologie ist, weil....m.T.

 
  
    #1
27.06.00 22:23
sie dann den untenstehenden Bericht lesen und hoffentlich verstehen.
Hoffentlich profitieren werden in den Folgetagen die beiden Nanotech-AG`s:
NANX (910885)
und/oder
ALTI (902675)
Hier der kommende Bericht:

Business & Technology 7/3/00


                         The next big thing is
                         small
                         Machines the size of molecules are
                         creating the next industrial revolution

                         By Phillip J. Longman

                         Several months ago, a group of scientists from the
                         University of Michigan's Center for Biologic
                         Nanotechnology traveled to the U.S. Army's
                         Dugway Proving Ground in Utah. The purpose of
                         their visit: to demonstrate the power of
                         "nano-bombs." These munitions don't exactly go
                         "Kaboom!" They're molecular-size droplets, roughly
                         1/5000 the head of a pin, designed to blow up
                         various microscopic enemies of mankind, including
                         the spores containing the deadly biological warfare
                         agent anthrax.

                         The military's interest in nano-bombs is obvious. In
                         the test, the devices achieved a remarkable 100
                         percent success rate, proving their unrivaled
                         effectiveness as a potential defense against anthrax
                         attacks. Yet their civilian applications are also
                         staggering. For example, just by adjusting the
                         bombs' ratio of soybean oil, solvents, detergents,
                         and water, researchers can program them to kill the
                         bugs that cause influenza and herpes. Indeed, the
                         Michigan team is now making new, smarter
                         nano-bombs so selective that they can attack E.
                         coli, salmonella, or listeria before they can reach
                         the intestine.

                         If you're a fan of science fiction, you've no doubt
                         encountered the term nanotechnology. Over the
                         past 20 years, scores of novels and movies have
                         explored the implications of mankind's learning to
                         build devices the size of molecules. In a 1999
                         episode of The X-Files titled "S. R. 819,"
                         nanotechnology even entered the banal world of
                         Washington trade politics, with various nefarious
                         forces conspiring to pass a Senate resolution that
                         would permit the export of lethal "nanites" to rogue
                         nations.

                         Yet over the past year or so, a series of
                         breakthroughs have transformed nanotech from
                         sci-fi fantasy into a real-world, applied science, and,
                         in the process, inspired huge investments by
                         business, academia, and government. In industries
                         as diverse as health care, computers, chemicals,
                         and aerospace, nanotech is overhauling production
                         techniques, resulting in new and improved
                         products–some of which may already be in your
                         home or workplace.

                         Silicon fingers. Meanwhile, nearly every week,
                         corporate and academic labs report advances in
                         nanotech with broad commercial and medical
                         implications. In April, for example, IBM announced
                         it had figured out a way to use DNA to power a
                         primitive robot with working, silicon fingers 1/50 as
                         thick as human hair. Within a decade or so, such
                         devices may be able to track down and destroy
                         cancer cells. Over at Cornell University, researchers
                         have developed a molecular-size motor, built out of
                         a combination of organic and inorganic
                         components, that some dub nanotech's "Model T."
                         In tests announced last September, the machine's
                         rotor spun for 40 minutes at 3 to 4 revolutions per
                         second. When further developed, such motors will
                         be able to pump fluids, open and close valves, and
                         power a wide range of nanoscale devices.

                         These inventions and products are just the
                         beginning of what many observers predict will be a
                         new industrial revolution fostered by man's growing
                         prowess at manipulating matter one atom, or
                         molecule, at a time. (Nanotech takes its name from
                         the nanometer, a unit of measurement just one
                         billionth of a meter long.) "Because of nanotech, we
                         will see more change in our civilization in the next
                         30 years than we did during all of the 20th century,"
                         says Mihail Roco, a senior adviser for
                         nanotechnology at the National Science
                         Foundation.

                         In a speech at Caltech last January, in which he
                         called for a $497 million National Nanotechnology
                         Initiative, President Clinton recounted some of the
                         wonders that he and his science advisers believe
                         are in store. "Imagine the possibilities," Clinton
                         gushed. "Materials with 10 times the strength of
                         steel and only a small fraction of the weight.
                         Shrinking all the information housed at the Library
                         of Congress into a device the size of a sugar cube.
                         Or detecting cancerous tumors when they are only
                         a few cells in size."

                         To build such objects, engineers are employing a
                         wide range of techniques, borrowed from
                         bioengineering, chemistry, and molecular
                         engineering. Such feats include imitating the
                         workings of the body, where DNA not only
                         programs cells to replicate themselves but also
                         instructs them how to assemble individual
                         molecules into new materials, such as hair or milk.
                         In other words, many nanotech structures build
                         themselves.

                         Atom by atom. The inspiration for nanotech goes
                         back to a 1959 speech by the late physicist
                         Richard Feynman, titled "There's Plenty of Room at
                         the Bottom." Feynman, then a professor at the
                         California Institute of Technology, proposed a novel
                         concept to his colleagues. Starting in the Stone
                         Age, all human technology, from sharpening
                         arrowheads to etching silicon chips, has involved
                         whittling or fusing billions of atoms at a time into
                         useful forms. But what if we were to take another
                         approach, Feynman asked, by starting with
                         individual molecules or even atoms, and assembling
                         them one by one to meet our needs? "The
                         principles of physics, as far as I can see, do not
                         speak against the possibility of maneuvering things
                         atom by atom," Feynman noted.

                         Four decades later, Chad Mirkin, a chemistry
                         professor at Northwestern University's $34 million
                         nanotech center, used a nanoscale device to etch
                         most of Feynman's speech onto a surface the size
                         of about 10 tobacco smoke particles–a feat that
                         Feynman would no doubt have taken as vindication.
                         But the course science took to achieve such levels
                         of finesse has not always been straightforward. Nor
                         has it been lacking in controversy.

                         Indeed, some scientists are alarmed by
                         nanotechnology's rapid progress. Last April, Bill
                         Joy, the chief scientist at Sun Microsystems,
                         created a stir when he published an essay in Wired
                         magazine warning that in the wrong hands,
                         nanotech could be more destructive than nuclear
                         weapons. Influenced by the work of Eric Drexler, an
                         early and controversial nanotechnology theoretician,
                         Joy predicted that trillions of self-replicating
                         nanorobots could one day spin out of control,
                         literally reducing the earth's entire biomass to "gray
                         goo." Joy foresees bans on some kinds of
                         research, along the lines of prohibitions against
                         biological or chemical warfare, but admits he is not
                         sure how to institute them. "I don't think there is a
                         technological solution," he says. "I think it has to
                         be ethical and political."

                         Most researchers in the field don't share Joy's
                         concern. "We are compelled to keep going. It is
                         just so cool," says Paul Alivisatos, professor of
                         chemistry at the University of California-Berkeley.
                         "We are knocking on the door of creating new living
                         things, new hybrids of robotics and biology. Some
                         may be pretty scary, but we have to keep going."

                         The early payoffs have already arrived. Computer
                         makers, for example, use nanotechnology to build
                         "read heads," a key component in the
                         $34-billion-a-year hard disk drive market, which
                         vastly improve the speed at which computers can
                         scan data. Another familiar product, Dr. Scholl's
                         brand antifungal spray, contains nano-scale zinc
                         oxide particles–produced by a company called
                         Nanophase Technologies–that make aerosol cans
                         less likely to clog. Nanoparticles also help make
                         car and floor waxes that are harder and more
                         durable and eyeglasses that are less likely to
                         scratch. As these examples show, one huge
                         advantage of nanotech is its ability to create
                         materials with novel properties not found in nature
                         or obtainable through conventional chemistry.

                         What accounts for the sudden acceleration of
                         nanotechnology? A key breakthrough came in
                         1990, when researchers at IBM's Almaden
                         Research Center succeeded in rearranging
                         individual atoms at will. Using a device known as a
                         scanning probe microscope, the team slowly moved
                         35 atoms to spell the three-letter IBM logo, thus
                         proving Feynman right. The entire logo was less
                         than three nanometers.

                         Soon, scientists were not only manipulating
                         individual atoms but "spray painting" with them as
                         well. Using a tool known as a molecular beam
                         epitaxy, scientists have learned to create ultrafine
                         films of specialized crystals, built up one molecular
                         layer at a time. This is the technology used today
                         to build read-head components for computer hard
                         drives.

                         One quality of such films, which are known as giant
                         magnetoresistant materials, or GMRs, is that their
                         electrical resistance changes drastically in the
                         presence of a magnetic field. Because of this
                         sensitivity, hard disk drives that use GMRs can
                         read very tightly packed data and do so with
                         extreme speed. In a few years, scientists are
                         expected to produce memory chips built out of
                         GMR material that can preserve 100 megabits of
                         data without using electricity. Eventually, such
                         chips may become so powerful that they will simply
                         replace hard drives, thereby vastly increasing the
                         speed at which computers can retrieve data.

                         Natural motion. The next stage in the
                         development of nanotechnology borrows a page
                         from nature. Building a supercomputer no bigger
                         than a speck of dust might seem an impossible
                         task, until one realizes that evolution solved such
                         problems more than a billion years ago. Living cells
                         contain all sorts of nanoscale motors made of
                         proteins that perform myriad mechanical and
                         chemical functions, from muscle contraction to
                         photosynthesis. In some instances, such motors
                         may be re-engineered, or imitated, to produce
                         products and processes useful to humans.

                         Animals such as the abalone, for example, have
                         cellular motors that combine the crumbly
                         substance found in schoolroom chalk with a
                         "mortar" of proteins and carbohydrates to create
                         elaborate, nano-structured shells so strong they
                         can't be shattered by a hammer. Using a
                         combination of biotechnology and molecular
                         engineering, humans are now on the verge of being
                         able to replicate or adapt such motors to suit their
                         own purposes.

                         How are these biologically inspired machines
                         constructed? Often, they construct themselves,
                         manifesting a phenomenon of nature known as
                         self-assembly. The macromolecules of such
                         biological machines have exactly the right shape
                         and chemical binding preferences to ensure that
                         when they combine they will snap together in
                         predesigned ways. For example, the two strands
                         that make up DNA's double helix match each other
                         exactly, which means that if they are separated in a
                         complex chemical mixture, they are still able to find
                         each other easily.

                         This phenomenon is potentially very useful for
                         fabricating nanoscale products. For instance, last
                         year, a team of German scientists attached building
                         materials such as gold spheres to individual strands
                         of DNA and then watched as the strands found
                         each other and bound together the components
                         they carried, creating a wholly new material.

                         Similarly, the 1996 Nobel Prize in chemistry went
                         to a team of scientists for their work with
                         "nanotubes"–a formation of self-assembling carbon
                         atoms about 1/50,000 the width of a human hair.
                         Scientists expect that when they succeed in
                         weaving nanotubes into larger strands, the resulting
                         material will be 100 times stronger than steel,
                         conduct electricity better than copper, and conduct
                         heat better than diamond. Membranes of such
                         fibers should lead to rechargeable batteries many
                         times stronger, and smaller, than today's.

                         Last March, a team of IBM scientists announced
                         that they had used self-assembly principles to
                         create a new class of magnetic materials that could
                         one day allow computer hard disks and other
                         data-storage systems to store more than 100 times
                         more data than today's products. Specifically, the
                         researchers discovered certain chemical reactions
                         that cause tiny magnetic particles, each uniformly
                         containing only a few thousand atoms, to
                         self-assemble into well-ordered arrays, with each
                         particle separated from its neighbors by the same
                         preset distance.

                         Other scientists have discovered important new
                         self-assembling entities by accident. In 1996,
                         Samuel Stupp, a professor at Northwestern
                         University, was in his lab trying to develop new
                         forms of polymer when he inadvertently came upon
                         "nanomushrooms." "It was such a beautiful thing,"
                         recalls Stupp. "I saw the potential right away." The
                         molecules he had been experimenting with had
                         spontaneously grouped themselves into
                         supramolecular clusters shaped like mushrooms.
                         Soon afterward, Stupp discovered, again
                         accidentally, that he could easily program these
                         supramolecules to form film that behaves like
                         Scotch tape.

                         Meanwhile, researchers at UCLA and
                         Hewlett-Packard have laid the groundwork for the
                         world's first molecular computer. Eventually, the
                         researchers hope to build memory chips smaller
                         than a bacterium. Such an achievement is essential
                         if computing power is to continue doubling every 18
                         to 24 months, as it has for the past four decades.
                         This is because the more densely packed the
                         transistors on a chip become, the faster it can
                         process, and we are approaching the natural limit to
                         how small transistors can be fabricated out of
                         silicon.

                         Future phenomena. Where will it all end? Many
                         futurists have speculated that nanotech will
                         fundamentally change the human condition over the
                         next generation. Swarms of programmable
                         particles, sometimes referred to as "utility fog," will
                         assemble themselves on command. The result
                         could be a bottle of young wine molecularly
                         engineered to taste as if it had aged for decades, or
                         a faithful biomechanical dog with an on/off switch.

                         Meanwhile, new, superstrong, lightweight
                         nanomaterials could make space travel cheap and
                         easy and maybe even worth the bother, if, as some
                         authors predict, nanotech can be used to create an
                         Earth-like atmosphere on Mars. And space
                         colonization could well be necessary if the new
                         science of "nanomedicine" extends life indefinitely,
                         manufacturing new cells, molecule by molecule,
                         whenever old cells wear out. It all seems hard to
                         imagine; yet nanotech has already produced
                         enough small wonders to make such big ideas
                         seem plausible, if not alarming–at least to the high
                         priests of science.

                         With Janet Rae-Dupree and Charles W. Petit

 

21 Postings, 8728 Tage CharonJr.Hmm...

 
  
    #2
28.06.00 14:29
Und was genau hat das mit den beiden genannten Unternehmen zu tun ?

Ich habe zwar nicht sehr viel Ziet damit verbracht mir beide anzusehen, aber was ich so gelesen habe würde ich unter dem Strich am ehesten mit "Herstellung von Partikeln mit Nanometergröße" beschreiben, was eigentlich recht wenig mit der Nanotechnologie gemeinsam hat, die in dem Artikel beschrieben wurde.

Interessanterweise ist der Kurs Altair (werden in Berlin gehandelt) aber heute um 14% gestiegen. Vielleicht hat jemand mehr über die Firmen rausbekommen ??? Oder vielleicht ein Zufall (Volumen glaube ich 200 Stück, bei eimen Kurs von 4 Euro) ??? Oder hat vielleicht auch nur jemand nach dem Posting hier gekauft ohne zu wissen was die Unternehmen genau machen ???

Um ein ganz klar herauszustellen: Ich glaube, daß die Nanotechnologie (besonders auch im Zusammenspiel mit der Biotechnologie) in den nächsten Jahrzehnten für gewaltige Verärderungen sorgen wird und daher ganz klar ein Markt der Zukunft ist, aber ich kann bei beiden genannten Unternehmen wenig entdecken, was sie unter diesem Licht interessant erscheinen läßt.

Wer kennt Gesellschaften, die sich tatsächlich bereits intensiv und hauptsächlich mit dem Thema beschäftigen ? Oder findet bisher alles doch eher in den Labors von Unis und staatlichen Einrichtungen statt (weil Grundlagenforschung mit der sich auf absehbare Zeit noch keine Gewinne machen lassen)?

Macht's gut ...

CharonJr
 

714 Postings, 9083 Tage FipsHi CharonJr

 
  
    #3
28.06.00 14:35
Im Prinzip hast du recht, es gibt die 2 Bereiche Nanomaterialien und Nanosystemtechnik. Unter letzteres fällt zum Bleistift der Sensor, der die Airbags im Auto auslöst (Hersteller TEMIC). Such mal in dem uralt-Thread von Kicky den Link vom Nanonetz raus - da kann man mehr über das Ganze erfahren.  

21 Postings, 8728 Tage CharonJr.Fips: Danke für den Hinweis ...

 
  
    #4
28.06.00 14:50
Mal sehen, was sich dort so finden läßt, aber alles was ich bisher so gehört habe deutet doch darauf hin, daß die Nanotechnologie an sich (keine Nanopartikel) noch einige Zeit im Bereich der Grundlagenforschung anzusiedeln ist bzw. einige Firmen bei der Lösung eigener Probleme/eigener Grundlagenforschung in den Bereich Nanotechnologie mit vorstoßen (siehe IBM).

Macht's gut ...

CharonJr.
 

   Antwort einfügen - nach oben